


Management Summary

In the last decade or so, the main attraction at CERN has been the Large Hadron Collider (LHC), which was
indispensable to the discovery of the Higgs boson, as well as that of many other particles.[1] The LINAC3 is an
integral part of the CERN accelerator complex, as it provides the initial ion beam used by the LHC and various other
accelerators and experimental setups. The LINAC3, however, is an exceedingly complex machine, whose operation is
dependent on a large number of input parameters. This results in a large variability of the intensity of the output
ion beam. This report investigates how modern machine learning and prediction technologies can be implemented to
devise a predictive system to warn the operators beforehand that the beam might decay, as well as to get better insight
into what causes these decays. To tackle this problem, we have divided the group into three di↵erent subgroups. We
have a group that applied time series analysis, a group that concerned itself with various data reduction and feature
selection methods and a group that explored a neural network approach.
The main takeaway from our investigations is that it is either not possible, or extremely di�cult, to predict future

beam decay based solely on observation of current beam state. This conclusion was robust across models; even after
applying sophisticated approaches based on current machine learning techniques, the ability of our models to forecast
beam decay remained roughly on par with the persistence model (i.e. for every point in time the beam will stay the
same as it is now). We have identified the following possible reasons for this:

• The fact that the operator is operating the machine could be removing patterns in the data; i.e. any “predictable”
decay is already corrected for.

• Beam decay could be truly chaotic (i.e. actually impossible to predict on su�ciently large time scales).

• Beam decay could be highly path-dependent, and only successfully predicted through an analysis of dynamics of
sensor measurement that intelligently aggregated data from multiple times.

• Beam decay could rely on some hidden variables that are not infer-able from current measurements.

However, although we were not able to produce a predictive model for beam decay, we have produced new insight into
the beam decay problem that is potentially useful. From the feature selection and Granger causality research, we have
identified subsets of columns that are worth looking into for future research, and additionally potential causes within
the non-beam current columns. And finally, from the Ising model, we have given a model that flexibly segments the
data.
We make the following recommendations for future research possibilities:

• The inability to predict the beam current can come from operators adjusting settings to prevent a beam decay,
and disturbing the ’natural course’ of the beam. An option is to reduce our dataset to times where the operator
is not on duty.

• There can be some hidden variables that are not represented in the dataset but have a large influence on the
beam current, e.d. the time since the last oven cleaning. Including extra variables, also by adding more sensors
to the beam apparatus could help.

• Another possibility is to make a binary classification of the current into stable and unstable beams. Instead of
predicting the beam current, one could predict this boolean.
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CERN LINAC3 Forecasting

1 Introduction

In the last decade or so, the main attraction at CERN has been the Large Hadron Collider (LHC), which was
indispensable to the aforementioned discovery of the Higgs boson, as well as that of many other particles.[1] This report
investigates how modern machine learning and prediction technologies can be implemented to improve the operation
of the linear accelerator LINAC3, that supplies the LHC with heavy ions for its physics program, as displayed in the
schematic below.
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Figure 1: A schematic Of The Accelerator Complex

1.1 The LINAC3

The LINAC3 is an integral part of the CERN accelerator complex, as it provides the initial ion beam used by the LHC
and various other accelerators and experimental setups. Initially, the LINAC3 was specifically designed to produce
lead ions, which are heavier than proton beams and therefore have higher kinetic energies at the same speed. Later
the LINAC3 was modified to also produce argon and xenon beams.
At the origin of the LINAC3 accelerator, lead atoms are stripped of some of their electrons (the remaining electrons are
removed in a later stage), resulting in electrically charged lead ions. This charge allows for the ions to be manipulated
by electromagnetic fields, so that they can be accelerated to some initial velocity and directed towards the Low Energy
Ion Ring, where further preparation before injection into the LHC takes place. Because of this dependence of the LHC
on the beam produced by the LINAC3, it is crucial that the latter operates as smooth and consistently as possible.
The LINAC3, however, is an exceedingly complex machine, whose operation is dependent on a large number of input
parameters. This results in a large variability of the intensity of the output ion beam. The beam intensity regularly
starts to decay without an easily detectable cause. The machine is operated by experts who are often able to prevent
decay through a combination of intuition and experience, but as of yet there is no exhaustive solution which can be
implemented whenever the beam starts to decay, or even a clear way to predict when the beam will start to decay.
This last problem is the one we will deal with in this report, in which we search for appropriate machine learning and
predictive techniques which can be implemented as an early warning system for beam decay.
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1.2 Aim of the Project

It is our goal to devise a predictive system to warn the operators beforehand that the beam might decay, as well as to
get better insight into what causes these decays. For this we will distinguish three levels of a predictive system.

1. Causality:
This part will determine whether certain parameters caused the decay or could have a high contribution to the
decay.

2. Prediction:
This part will make an actual prediction on whether the beam will decay in a certain amount of time.

3. Decision support:
This part will help with decision making. It will give an actual possible solution to make sure the beam will not
decay.

All parts are closely related to one another. For example, understanding which parameters contributes the most to
the decay, will help make a better prediction and can help with the decision making.
The aim of this project will be to explore various machine learning techniques in order to provide a better understanding
of the parameters and the machine itself. This can be really useful for CERN and maybe in the future this can help
to achieve a predictive system which outperforms the persistence model, which is currently surpassed only by very a
small margin by all the models developed to this end.
To tackle this problem, we have divided the group into three di↵erent subgroups. We have a group that applied time
series analysis, a group that concerned itself with Principal Component Analysis (PCA) and a group that explored a
neural network approach. In the end we did not have the time or resources to delve into decision support. All the
methods investigated by these subgroups will be discussed in the methods section.

2 Beam Data

For this project we initially received training data spanning from April to November 2018, with a sampling resolution
of one data point per minute.
This data consisted of three categories. The first is the current of the outgoing beam, the second consists of the source
settings adjustable by the operators, e.g. the power going into an oven, and the third is the data received from sensors
in the LINAC3. This in total amounts to 305531 data points spread over 34 columns. A brief description of the data
can be found in Appendix B.
Visual inspection of the data, as demonstrated in Section 2 leads to a di↵erent classification into categories of columns
based on amount of activity. Some of the columns are highly dynamic, and have large amounts of noise. These columns
include, for instance IP.NSRCGEN:RFSAIREMAQNREV, or IP.NSRCGEN:BIASDISCAQNI. Other columns are entirely static,
like IP.NSRCGEN:GASLOOP or IP.NSRCGEN:OVEN2AQNI. And then there are some which are mixed; i.e. are mainly piece-
wise constant, with rare spikes. These include IP.NSRCGEN:SOURCEHTAQNV and IP.NSRCGEN:SOURCEINTERMEDIATEHTAQNI.
The methods that we have used were primarily focused on the dynamic columns, and (of course) the beam current.
We would have liked to have spent more time working to understand the rare spikes in the mainly constant data,
but we did not ultimately have the time to do this. The spikes are especially tantalizing because they seem to be
correlated across columns, for instance

IP:NSRCGEN:SOURCEHTAQNV, IP:NSRCGEN:SOURCEINTERMEDIATEHTAQNV and IP:SOLEXT.ACQUISITION:CURRENT.

Within the dynamic columns, there are clusters which are highly correlated. For instance, the columns

IP:NSRCGEN:BIASDISCAQNV, IP:NSRCGEN:GAS2AQN, IP:NSRCGEN:GAS3AQN and IP:NSRCGEN:GASAQN.

all seem to be slightly di↵erent measurements of the same underlying phenomenon.
Other correlated columns are

IP:NSRCGEN:GASEXTRACTIONAQN and IP:NSRCGEN:GASSOURCEAQN,

and

IP:NSRCGEN:OVEN1AQNI, IP:NSRCGEN:OVEN1AQNP, IP:NSRCGEN:OVEN1AQNR and IP:NSRCGEN:OVEN1AQNV.

Later on, we will do dimensionality reduction, and this visual categorization should serve as a useful sanity check
for the validity/power of this reduction; ideally we should only be picking one column from each of these correlated
categories.
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Figure 2: All Columns of the Data (Red), Plotted Against the Beam Current (Blue)
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2.1 Preprocessing

The sensor data exhibits quite some stochastic “jittering”, a form of noise in which the sensor value drops down
significantly, for a short period of time. This jittering complicates training a Neural Network (NN) significantly [2,
3, 4]. Hence, we tried to remove such noise by using an exponential rolling average. The exponential rolling average
computes the rolling average over a subset of the data, where the most recent data points are most important. In this
way, we thought we could combat the jittering in the best way, without losing too much detail and without slowing
the mean thus far that it has di�culties “snapping” onto new values. We did not want to lose information about the
extent of the jittering. That is why we also calculated the exponential rolling variance averages of the data. This is
done for each column in the dataset, except the time column, giving us 100 columns to choose from.

3 Methods

The methods that were investigated by the three subgroups fall into two broad categories. The first category was
data description. In this category, we attempted to get a better understanding of the data by extracting features and
seeing how well various models fit.
In the second category, we tried to make predictions on the data using a variety of machine learning techniques. These
techniques included using some of the features found in the previous section to preprocess the data, which lead to
modest improvements in learning performance.

3.1 Data Description

In this section, we describe methods that we used to get a better understanding of the LINAC3 behavior. Broadly
speaking, these methods gave us a better understanding of the statistical properties of the data, i.e. correlations and
lack of correlations.

3.1.1 Dimensionality Reduction

In Section 2, visual inspection of the data revealed that many of the time series are highly correlated, and many of
the time series are highly static. This implies that we may be able to reduce our number of features by a great deal
without sacrificing model accuracy. Making this reduction also tells us something about what is important in the
data.
We chose to reduce dimensionality by eliminating features. We did this via an ensemble of three methods.

1. The LASSO, which fits a linear model and tries to make as many coe�cients 0 as possible. The LASSO method
regularizes model parameters by shrinking the regression coe�cients, reducing some of them to zero. The feature
selection phase occurs after the shrinkage, where every non-zero value is selected to be used in the model. The
amount of penalization ↵ was chosen by cross validation. The LASSO is initially due to [5], and we used the
implementation in [6].

2. Recursive feature elimination (RFE) applied to a random forest model. RFE is a general strategory for removing
unnecessary features from a model. It attempts to remove as many features as it can without degrading model
performance too much. The theory of RFE is laid out in [7], using the random forest model from [8]. The
implementation we used was the one in scikit-learn [6], using techniques from [9].

3. RFE applied to a random forest model with gradient boosting. The same description above applied, only using
gradient boosting instead of random forests, which is described in [10].

In each of these methods, the features are evaluated based on their utility in predicting the beam current 15 minutes
in advance; more discussion on the relation between supervised learning and time series will be had in a later section.
We removed a feature if all of these models reported that the feature was unnecessary. This reduced feature set both
told us something interesting about the data itself, and also helped us develop an improved supervised learning model
later on.

3.1.2 Beam Classification

We conducted an analysis of the beam current based on the assumption that the beam has two essential states:
“steady” and “failing.” These states are characterized by a variety of features, but the most important one is low
beam current over a sustained period of time. Corresponding to this, we made a classification of beams based on local
averages of the beam current. Using this classification, we explored the distribution of how long the beam remained
steady.
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We also implemented a more sophisticated model for classification of “steady” versus “failing” beams, that captures
more directly the assumption that beams are “steady” or “failing” for long periods of time. This assumption was
implemented by a statistical mechanics model which assigns high energy to proposed classifications which frequently
change from “steady” to “failing”, and low energy to proposed classification which don’t jump between states very
often. The inspiration for this model is due to [11], and the implementation in terms of Gibbs sampling is taken from
[12].

3.1.3 Traditional Time Series Models

We then attempted to model the beam current using an autoregressive model. This gives a prediction for Xt as a
linear combination of Xt�1, . . . , Xt�k. We investigated how well the autoregressive model described the data, and
whether or not it could be used for prediction. This is the most traditional approach to time series modelling, and is
laid out in [13].

3.1.4 Granger Causality

Finally, we performed a Granger causality analysis [14] of the di↵erent exogenous variables on the main beam current.
This analysis measures whether an autoregressive linear model involving a given exogenous variable and the main
beam current makes better predictions than a model just involving the main beam current.

3.2 Supervised Learning

The basic task for supervised learning is to reconstruct either continuous or discrete labels from labeled data. There
are many o↵-the-shelf algorithms for supervised learning available in libraries such as scikit-learn [6]. The assumption
behind supervised learning is that one is taking independent and identically distributed (i.i.d.) samples from a fixed
distribution for two variables, X and Y . In classification, Y takes values in a finite set, and in regression, Y takes
values in R. Typically, X takes values in Rn. The objective of the supervised learning is to find an estimator ŷ(X)
such that E[d(ŷ(X), y)] is minimized, where d is some distance measure.
Supervised learning takes in data in “tabular form”, where X is a d⇥ n matrix (with d the number of features) and
y is a length-n vector. Reducing a time series prediction task to “tabular form” requires non-trivial decision making
[15], and we will discuss the various approaches that we took in the sections below.

3.2.1 General Models

The most basic approach uses the value of all of the time series at time t as X, and the value of the beam current at
time t+ T as y. More precisely, if Bt,1:n is a multivariate time series, and we are interested in predicting Bt+T,1, then
we sample t randomly, and let X = Bt,1:n and y = Bt+T,1. This approach relies on the following assumptions.

1. We can pick times t so that our collection of samples is roughly i.i.d. (or more generally, exchangable).

2. The time series is Markovian, so that Bt+T,1 is independent of Bt�k,j for k � 1, given Bt,1:n.

In this approach, the persistence model sets B̂t+T,1 = Bt,1.
We assumed that we had enough data so that overfitting due to non-i.i.d. samples would not be a problem. If we had
suspiciously good predictions, we would have worried about whether the model had simply learned every dip of the
data, but, as we will discuss later, this was not the case.
A more sophisticated approach is to learn on a transformation of the raw time series data, as discussed in the Data
section. For instance, we might use a running mean. Any of the previous supervised learning techniques can be applied
to this “smoothed” data. Moreover, B̂t,1:n only relies on data up to time t, so it is valid for predicting. We can also
transform the y data; if we are interested in just predicting general trends, it might be useful to smooth it out. We do
this with a Gaussian convolution. Finally, in computing the running mean, we might have lost important information
coming from the variance; i.e. a noisy beam could be an indicator of a future decay, even if the mean is high. We
account for this by looking at a “running variance” in addition to the running mean.
We ran a variety of o↵-the-shelf algorithms on di↵erent combinations of these preprocessing techniques, to get an idea
of what kind of baseline performance simple models would do. These o↵-the-shelf algorithms all come from scikit-learn
[6], and we list them along with their name in that library.

1. Linear Regression,
sklearn.linear model.Linear

2. Ridge Regression,
sklearn.linear model.Ridge
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3. Perceptron Regression,
sklearn.neural network.MLPRegressor

4. Gradient Boosted Regression,
sklearn.ensemble.HistGradientBoostingRegressor

5. Support Vector Regression,
sklearn.svm.SVR

3.2.2 Focused Model: Neural Net

After the o↵-the-shelf algorithms, we tried again with a custom neural net architecture, only looking at the features
that the data description team identified as most important, and augmenting with running means, variances, and past
data. This more advanced model was implemented using Keras [16], and we will talk more about the details in the
results section, where we discuss how we modified the architecture based on the ouputs that we were getting.

3.2.3 Focused Model: XGBoost

Among the machine learning methods used in practice, gradient tree boosting is one technique that shines in many
applications. Tree boosting has been shown to give state-of-the-art results on many standard classification benchmarks.
XGBoost stands for “Extreme Gradient Boosting”1. In brief, boosting uses sequences of decision trees that seek to
reduce the residuals of the prior tree. In other words, each new tree uses the residual of the prior tree as the target
variable for the current tree. In doing so, for each new tree, greater focus is given to the larger errors of the prior trees.
After enough trees are created, the sum of all tree predictions is calculated to generate the final predicted value.
There are three of the primary enhancements of XGBoost:

• Two forms of regularization which are meant to reduce the potential of overfitting prediction.

– L1 (LASSO) regularization, which will push feature weights to zero and is represented by the alpha param-
eter.

– L2 (ridge) regularization, which will push feature weights asymptotically to zero and is represented by the
lambda parameter.

• Gamma parameter: control the complexity of a given tree. The gamma parameter is used to set the minimum
reduction in loss required to make a further split on a leaf node. XGBoost will use the gamma parameter in
its pruning steps. It will grow the trees to a specified level and then use the gamma parameter in determining
which leaf nodes to remove.

• Scalability and parallel distributed computing. The most important factor behind the success of XGBoost is its
scalability in all scenarios. The system runs more than ten times faster than existing popular solutions on a single
machine and scales to billions of examples in distributed or memory-limited settings. Parallel and distributed
computing makes learning faster which enables quicker model exploration. More importantly, XGBoost exploits
out-of-core computation and enables data scientists to process hundred millions of examples on a desktop.

4 Results

4.1 Data Description

4.1.1 Dimensionality Reduction

Recall that we designed a system of three feature eliminators, the LASSO, RFE with a random forest, and RFE with
gradient boosting, and we eliminated a feature if and only if it was eliminated in all three of these models. The result
of this process was that only the features in the following list were retained.

• Time

• IP.NSRCGEN:GAS3AQN

• IP.NSRCGEN:GASAQN

• IP.NSRCGEN:OVEN1AQNR

• IP.NSRCGEN:RFSAIREMAQNFWD

• IP.NSRCGEN:SOURCEHTAQNI

• IP.NSRCGEN:SOURCEHTAQNV

• IP.SAIREM2:FORWARDPOWER

• IP.SOLEXT.ACQUISITION:CURRENT
1Gradient tree boosting is also known as gradient boosting machine (GBM) or gradient boosted regression tree (GBRT)
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Figure 4: Ising Model Classification of Good/Bad Beams

4.1.2 Beam Classification

We used exponentially averaged current data I (ITL.BCT05:CURRENT). We selected from the data only the stable beam
periods: time intervals of at least 100-minute-long periods where I > 165µA. This yields 97 successful beams. In
Figure 3(b) a couple of these beams are plotted, while in (a) the histogram of beam lengths is shown. It appears that
the beam lengths are roughly exponentially distributed. We fit �e��(t�100) to the histogram, yielding � ⇡ 0.02min�1.
So on average you expect the current to be above 165µA for an average time of 1

� ⇡ 50min.

(a) Histogram of successful beam lengths. (b) An example of a couple of

successful beams, all ending at

1050 minutes (length of longest

beam).

Figure 3: The exponentially averaged data split into successful beam intervals.

That these lengths are roughly exponentially distributed suggests that we can treat the current as some stochastic
process It where t is time. We made the assumption that each individual successful beam is a realization of this same
process It. This hypothesis was important in later modelling with traditional time series models. In this section, we
also discuss the more sophisticated model for classifying beams based on statistical mechanics. We then sampled from
this system using Gibbs sampling. The result is depicted in Figure 4.

We see that, without applying any smoothing, the system was able to successfully detect that small deviations are
not bad beams, but large deviations are. However, the Gibbs sampling procedure needed to compute this is fairly
expensive, and might not scale very well to larger time windows without a rethink of our algorithm.

Further directions that we could have taken with this method would include using a more sophisticated “local mag-
netization” function to bias the Ising model towards good/bad beams, which perhaps could take into account more
of the other time series. Additionally, once the good/bad beam data had been well-classified by this classification
scheme, we could use machine learning for classification, rather than regression. However, we have not had time to
attempt either of these approaches yet, which we recommend for future research.
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4.1.3 Traditional Time Series Models

Looking at Figure 3(b) there is obviously some dependence between current values at di↵erent times. As a first step
we took the di↵erenced current for each beam:

rIt = It+1 � It. (1)

Looking at Figure 6(a) we saw that rIt has no clear trends, and we assumed the series was stationary. We tested the
di↵erenced process rIt for dependence between values of di↵erent times. For each beam we calculated the Ljung-Box

statistic:

L =
kX

h=1

n(n+ 2)

n� h
⇢̂(h) (2)

where n is the length of the series rIt of each beam and ⇢̂ the observed auto-correlation at lag h for the beam. If the
series were independent, then L ⇠ �

2
k (a chi-squared distribution with k degrees of freedom), which is not case, see

Figure 5(a). Next, we pasted rIt of all beams together in order, for a new series Yt and computed the autocorrelations
and partial autocorrelations of this large series, see Figure 5(b) and (c). Note that Yt is not exactly the same as the
stochastic process rIt, but the 96 artificial transitions in Yt by pasting the beams together will only have a marginal
e↵ect on the whole series Yt of length 20165 min.

(a) Histogram of Ljung-Box

statistic of the beams for

k = 20, together with �2
20-

distribution.

(b) Autocorrelations of Yt. (c) Partial autocorrelations

of Yt.

Figure 5: Testing the independence of the di↵erenced current.

From Figure 5 we concluded that there is obvious dependence within the di↵erenced current, as the Ljung-Box test
indicates. Moreover, the autocorrelations show that Yt+h and Yt are only correlated for lag h = 1, while the partial
correlations suggest that the impact of an extreme Yt on next value Yt+h exponentially decays as h grows. Since
the autocorrelations are abruptly zero for lags greater than one, we suspect a moving average process of degree one
(MA(1)):

Yt = Zt + �Zt�1 (3)

where � is a constant coe�cient, and Zt a white noise sequence. Note that this way Yt+h only depends on Zt+h and
Zt+h�1, while Yt only depends on Zt and Zt�1. Hence Yt+h and Yt are indeed uncorrelated for h > 1.

The model Yt = ↵+Zt+�Zt�1 was fitted to the series Yt. This yielded ↵ = 0.0061±0.004µA and � = �0.8876±0.003.
Note that ↵ ⇡ 0µA. A non-zero ↵ would have suggested that the series Yt is more likely to be positive (or negative),
and hence there would have been some drift in the combined (pasted next to each other) currents It of the beams.
This violates our assumptions that all beams are just realizations of the same process, and that it does not matter at
what time of the year the beam takes place. Hence we took ↵ = 0µA. We also copied � = �0.9 from the fit. Therefore
our model for the di↵erenced current:

Yt = Zt � 0.9Zt�1. (4)
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(a) The di↵erenced currents rIt in µA for

the beams already shown in Figure 3(a).

(b) Histogram of the noise Zt obtained from the fit

to Yt.

Figure 6

From the MA(1)-fit we also obtained the series Zt as noise. The autocorrelations as well as the partial autocorrelations
both did not significantly di↵er from zero for lags h > 0, so it seems Zt is an independent white noise series. As an
extra check we also computed the Hurst-exponent H of series Zt. The Hurst exponent 0  H  1 indicates whether a
series is persistent (H > 0.5), anti-persistent (H < 0.5) or a Brownian time-series (H ⇡ 0.5). For Zt we find H = 0.43,
which is quite close to 0.5, so we can safely take Zt to be a white noise series.

In Figure 6(b) the histogram of Zt is plotted, which shows that Zt has a quite high kurtosis. The kurtosis of Zt is 4.57,
so we have an excess kurtosis of 4.57-3 = 1.57. This can be an indication that Zt is the result of a GARCH-process,
which is also suggested by some slight volatility-clustering visible in Figure 6(a). However, if this were the case we
would also observe dependence in the squared time-series Z

2
t . Since Z

2
t has (partial) auto-correlations close to zero

for lags h > 0, we abandon the idea that Zt is the result of a GARCH-process.

A second approach to model Zt was to fit some distribution to the histogram of Zt in Figure 6(b). The series Zt has
average µ = 10�4

µA⇡ 0µA, and standard variation � ⇡ 5.5µA. We laid the histogram over a normal distribution
N (µ,�), which did not seem to be a good fit. However, the hyperbolic secant distribution (HS(µ,�)) fit the histogram
of Zt quite well! The pdf of the hyperbolic secant is defined as:

f(x;µ,�) =
1

2�

1

cosh(⇡2
x�µ
� )

. (5)

So we took that Zt ⇠ HS(0µA; 5.5µA).

Finally, our stochastic model for the current It was completed. We derived that rIt = Zt � 0.9Zt�1 where Zt ⇠

HS(0; 5.5), so:

It = It�1 + Zt � 0.9Zt�1. (6)

We tested this model by comparing simulations to observed data. In Figure 7(a) four beams are simulated beams and
one observed. The simulated beams behaved somewhat more erratically than the actual observed beam. To make a
better comparison between observation and simulation we simulated 10000 beams, all with starting value I0 = 178µA
(same as the average starting value of the 97 successful beams), and let them run until the current dips below 165µA.
Then we took out any beams shorter than 100 minutes, just as we had done with the observed beams. The histograms
of the observed and simulated beam lengths are in Figure 7(b). It can be seen that the stochastic model underestimates
the number of beams shorter than 3 hours.

All in all, the stochastic model is not bad but also not that great at reproducing observed data. This might be the best
one could expect given that we solely modelled the current ITL.BCT05:CURRENT without including any other observed
parameters.
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(a) Four simulated beams using Equa-

tion (6) and one observed beam in

purple, all with same initial value I0.

(b) Histogram of the lengths of 10000 simu-

lated beams, all with I0 = 178µA, together

with the histogram of observed beam lengths

(same as in Figure 3(a)).

Figure 7: Results from simulation experiments using Equation (6).

Lastly, we considered whether the stochastic model can be used to make predictions 15, 30 and 60 minutes ahead.
The best linear predictor, given in Equation (6), for It+h given that we know I0, I1, . . . , It and Z�1, Z0, . . . , Zt is:

⇧It+h = It � 0.9Zt (7)

since white noise Zt cannot be predicted based on past data the best prediction for Zt+1 is just zero. The theoretical
prediction error can be derived by recursively applying Equation (6):

It+h �⇧It+h = Zt+h + 0.1
h�1X

i=1

Zt+i. (8)

Since the hyperbolic secant distribution is a scale-free distribution, we have

Zt+h + 0.1
h�1X

i=1

Zt+i

⇠ HS

⇣
µ+ 0.1(h� 1)µ,

p
�2 + 0.1(h� 1)�2

⌘

= HS

⇣
0, 5.5

p
1 + 0.1(h� 1)

⌘
.

So the theoretical prediction error for only 15 minutes ahead (h = 15) already has a variance of roughly 5.8µA, which
is not that large compared to the average starting value of 178µA: only roughly 3.3%. However, compared to the
di↵erence with the ’good beam threshold’ of 165µA a beam only needs to decay by about 10µA to classify as bad
beam. Compared to this the variance is quite large. Hence, the stochastic model is not suitable to make predictions.

4.1.4 Granger Causality

We have applied the Granger causality tests to only a subset of the time series for the beam data, because several of
the time series did not change frequently enough to provide su�cient-rank matrices for least-squares fitting. What we
see in Figure 8 is the “f -val” coe�cient for each of the columns that change frequently enough, with an auto-regressive
model using 15 values back in the past. Roughly speaking, the “f -val” measures how much more of the variance can
be explained by the model with both the auxiliary time series and the main time series, as opposed to just the model
with the main time series.
We also applied the Granger causality test to every single pair of dynamic columns, to get the graph in Figure 9. The
plot of all Granger causalities reveals that the oven power has a strong causal influence on the gas pressure, which
makes a lot of sense, given that oven power is a setting and gas pressure is an acquisition which could plausibly depend
on oven power. We suspect that other Granger causality results could make similar sense given more understanding
of the machine, but we are not familiar enough with the physics behind LINAC3, to make sense of the data in this
way.
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Figure 8: Granger Causality f -vals for Subset of Columns

Figure 9: Log of Pairwise Granger Causality f -vals for all Columns, where lighter hues represent higher causality
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4.2 Supervised Learning

4.2.1 General Models

We discussed our procedure for the o↵-the-shelf models used for regression in this section, and the results are summa-
rized in Table 1. We combinatorially tried all combinations of preprocessing for X, preprocessing for y, and algorithm
used. We see that a score around 0.90 is typical, and 0.96 is in the high end. However, this high end is achieved by
smoothing the y, which would of course lead to a lower prediction error. Ultimately, the main conclusion is that it
doesn’t seem like any of the models work any better than others.

Xtype ytype model score

0 RAW RAW linear 0.867271
1 RAW RAW ridge 0.867267
2 RAW RAW neural 0.860908
3 RAW RAW gradient boost 0.907159
4 RAW RAW svr -0.318278
5 RAW SMOOTH linear 0.916850
6 RAW SMOOTH ridge 0.916845
7 RAW SMOOTH neural 0.907062
8 RAW SMOOTH gradient boost 0.956007
9 RAW SMOOTH svr -0.346541
10 MEANS RAW linear 0.874358
11 MEANS RAW ridge 0.874346
12 MEANS RAW neural 0.882958
13 MEANS RAW gradient boost 0.913442
14 MEANS RAW svr -0.306423
15 MEANS SMOOTH linear 0.923661
16 MEANS SMOOTH ridge 0.923649
17 MEANS SMOOTH neural 0.891227
18 MEANS SMOOTH gradient boost 0.961840
19 MEANS SMOOTH svr -0.346541
20 MEANSVAR RAW linear 0.877514
21 MEANSVAR RAW ridge 0.877494
22 MEANSVAR RAW neural 0.889851
23 MEANSVAR RAW gradient boost 0.918245
24 MEANSVAR RAW svr -0.324810
25 MEANSVAR SMOOTH linear 0.926728
26 MEANSVAR SMOOTH ridge 0.926721
27 MEANSVAR SMOOTH neural 0.942634
28 MEANSVAR SMOOTH gradient boost 0.966506
29 MEANSVAR SMOOTH svr -0.346541

Table 1: Prediction Results For Tabular Regressions

4.2.2 Focused Models: Neural Net

After the wide variety of approaches in Table 1, we attempted to give a more focused approach with a specialized
neural net architecture. In this part, we chose to use the rolling means of the data corresponding to the 9 columns
discussed in Section 4.1.1 and the 7 most important columns proposed by CERN, which are stated in the Appendix.
Since we are interested in predicting the future, we did not feed the NN only the current state, but also some features
of the past state, i.e., we assumed that the system is not entirely Markovian. We did this by feeding it two sets of
delayed values. E.g., for the 60-minute forecast, we fed it the current values, all values but with a 60-minute delay,
and all values but with a 120-minute delay.

In this way, we had 28 (or 21) input features and we used 3 hidden layers, with a total of 70 ReLu-nodes. Never
have we noticed that increasing the number of layers or nodes did increase performance. For the 60-minute forecast,
both sets of columns performed in terms of R2 and RMSE a little better than the persistence model, although not
significantly. For the 9 column set, it is visible that this model misses the crashes of the beam (there are many points
on the horizontal line for a predicted current of around 0.165mA).
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Figure 12: The prediction of the NN (orange) missed the downfall that occurred after a time of 400 minutes.

We tried a few things to counter this persistence model, which misses current downfalls.
One thing that we realised is that, in the data, the beam is in the stable state. It then might be totally reasonable
that the neural net learns persistence. With this in mind, we decided to skew the data a bit so that it would contain
less stable beams. For the case where we tried to have a ratio of about 1:1 between good beams and bad beams, we
had the following results.
One attempt to try to combat the persistence model was by removing persistent beam regions, in other words only
feeding it the small regions in which the crashes occurred. This did not work, and on top of that, it introduced a
strong bias in the predictions (see Figure 13), if all fractions that one feeds the NN for training contain crashes, one
filters out a significant part of the good beams. In this way, the NN does not see many successful beams and thus
predicts lower beam currents.

Figure 13: 2D-histogram of predicted vs true value of the LINAC3 current for the case where we skewed the data to
contain more decays2.

After actually plotting the predictions of the NN, and for the highest performing generic approach (gradient boost-
ing random forests), we concluded that there is not enough information in a single time frame (even with rolling
sum/variance applied) to predict the future beam current.

4.3 XGB model

For this approach, we use the exponential rolling averages from Section 2.1. Firstly, we analysed what time window
(10, 20 or 30 minutes) was most promising for XGBoost. The time window of 30 minutes proved most suitable (it had
the highest R2, see Figure 14), so we chose to use the exponential rolling average with a time window of 30 minutes.

2Note that in these graphs it would be best to have all data points around the line y = x, since that would correspond with a perfect
prediction.
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In this dataset, we have not 14, but 42 features, since for each feature, we now also have a rolling mean and a rolling
variance.

Figure 14: Using data preprocessed by three di↵erent windows to predict 15, 60 and 90 minutes ahead of
“ITL.BCT05:CURRENT” target.

Second, we need to select features for our model. The variables consists three parts: the time, 14 number of setting
variables that can be adjusted by operators, and 16 number of sensors variables that are considered a read only.
We mainly analyzed the following combinations of features:

• The oiginal dataset

• The rolling means

• The rolling means and rolling variances

• The original dataset, rolling means and rolling variances.

We did this for the 16 sensor variables without the 14 setting variables, and also for the 16 sensor variables together
with the 14 setting variables.

By comparison, we discovered that the XGBoost model with only the rolling means of the sensor features achieved
the best prediction result (the highest R2 score and the lowest RMSE score) and so, we selected the rolling means of
all sensor features, except for the feature IP.NSRCGEN:RFTHOMSONAQNREV, as it only contained zeros (see Appendix B).
Since using 16 variables can result in computational di�culties, we chose the use PCA to reduce the dimensions, which
allows us to reduce feature variables from 16 to 7.
For implementing our XGB model, we used a training dataset and a testing dataset. The training dataset corresponds
with data from mid April until mid November 2018. As testing dataset, we used data from mid November until mid
December 2018.

Now, it was time to test our approach and improve it by parameter tuning, some general approaches we tried are:

1. Choosing a higher learning rate. In general, the value of the learning rate is 0.1. However, for di↵erent problems,
the ideal learning rate sometimes fluctuates between 0.05 and 0.3, and choosing the ideal number of decision
trees corresponding to this learning rate. XGBoost has a very useful function called cv. It uses cross-validation
in each iteration and returns the ideal number of decision trees to use in the XGB model.

2. For a given learning rate and number of decision trees, we can tune the following parameters of the decision tree
by order to find optimal values for them. Those are the maximum tree depth, the minimum child weight, the
gamma, subsample and lastly colsample bytree).

3. Decrease the learning rate a bit and determine the ideal parameters again.

As a result, we have found that the following parameters for the linear XGBoost-Regressor worked best: colsam-
ple bytree= 0.9, subsample= 0.9, learning rate= 0.05, max depth= 9, min child weight= 1, n estimators= 3000,
gamma= 0, alpha= 0.

To finally benchmark this approach, we used to our test dataset to validate the accuracy of the model. Here we
divided the test data into a fitting and a forecasting part, in a 70/30 ratio, using random sampling. From Figure 15
above, the model seems very promising when applied to the testing dataset on random shu✏e test data with a 30%
test ratio. However, we should mainly focus on those regions of interest when the beam suddenly decays, as depicted
in Figure 16.
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Figure 15: Results for the XGBoost for 15, 60 and 90 minute forecast with the 6 column set; Left (R2: 0.9845, RMSE:
0.004988); Middle (R2: 0.9588, RMSE: 0.007976); Right (R2: 0.9458, RMSE: 0.009329)

Figure 16: Di↵erent beam decays. Left: Start from Nov 18th at 11:00 until Nov 19th at 07:00; Middle: Start from
Dec 2nd at 15:00 until Dec 3rd at 09:00; Right: Dec 5th the whole day.

Then, using the XGBoost model with the well-tuned parameters as mentioned above, we tried to forecast these three
regions. However, di↵erent from before, we dropped one specific region data each time (such as the drop in the first
specific region data, which starts from November 18th 11:00 to November 19th 07:00) and then used the rest of the
testing dataset as the fitting part. The specific region data which was just dropped from the testing dataset is used
as forecasting part. Repeating the aforementioned procedure three times, we then got our predictions for these three
important regions. The results were the following:

As we can see, the predictions generally capture the flow of the ground truth values. It reflects the change tend
well, but the variance of predictions is large and the fluctuations are pretty severe.
There is an exciting discovery: although we fail to predict the actual ground truth values (not even close), we can
better capture the change trend of beam current which provides some useful information for operators. Since our main
goal is to inform operators earlier before the beam current goes down and make the current as robust as possible,
XGBoost model can achieve something closer to this goal.

Since we got seven features after using the PCA method, we can plot the feature importance graph based on our
model and training dataset. There is an observation: Although the score value (F score) for each feature changes
with di↵erent training dataset, it seems that the rank always remains the same. The rank is as follows: Feature0 !

Feature1 ! Feature3 ! Feature2 ! Feature6 ! Feature4 ! Feature5. The feature importance is calculated by the
weight, representing is the number of times a feature appears in a tree (see Table 2).
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Figure 17: Predictions and ground truth values comparison.

Figure 18: The data we use to train our model is test df 30 drop out November 18th.
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0 0.36 -0.20 -0.07 0.23 0.15 0.30 -0.36 -0.13 -0.34 0.13 -0.37 0.36 -0.23 -0.17 -0.02 -0.18

1 0.18 -0.23 0.13 -0.06 0.22 0.04 0.18 0.25 0.23 0.03 -0.15 0.17 -0.33 0.40 0.46 0.40

2 0.04 -0.42 -0.19 -0.49 0.18 -0.39 -0.16 0.37 -0.18 -0.14 0.01 -0.01 0.13 -0.22 0.15 -0.22

3 -0.12 0.11 0.75 0.14 0.36 0.18 -0.07 0.27 -0.07 -0.04 0.08 -0.08 0.17 -0.20 0.10 -0.19

4 0.01 0.02 0.21 -0.13 -0.37 -0.19 -0.06 0.10 -0.03 0.85 -0.04 -0.01 -0.05 -0.05 0.03 -0.03

5 0.21 0.06 0.42 -0.12 -0.61 -0.19 -0.09 0.08 -0.05 -0.48 -0.23 0.07 -0.23 -0.02 -0.09 0.01

6 0.07 -0.20 0.37 -0.38 0.32 -0.22 0.06 -0.65 0.06 0.10 -0.04 -0.04 -0.09 0.05 -0.26 0.06

Table 2: Feature weights from the XGBoost approach with P : Pressure; mA, A: Current; V : Voltage; R: Resistance;
Sairem, Sairem2: reflected power in W .

We also used the model for producing 3000 trees. For this, we actually used the testing data as our training data, but
dropped out the decaying beam from November 18th to 19th (to be precise, from Nov 18th 11:00 am to 19th 7:00am)
and as test data, we take this drop out part. We use the same parameters for our model as earlier. We visualised the
first tree in Figure 19, the second tree is visible in Figure 20 in Appendix A.

Figure 19: The first tree structure.

5 Conclusion

5.1 Summary

The main takeaway from our investigations is that it is either not possible, or extremely di�cult, to predict future

beam decay based solely on observation of current beam state. This conclusion was robust across models; even after
applying sophisticated approaches based on current machine learning techniques, the ability of our models to forecast
beam decay remained roughly on par with the persistence model.
Possible reasons for this include the following.

1. The fact that the operator is operating the machine could be removing patterns in the data; i.e. any “predictable”
decay is already corrected for.

2. Beam decay could be truly chaotic, i.e. actually impossible to predict on su�ciently large time scales. This
would comport well with the result that beam length is exponentially distributed, which implies that the beam
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is Markovian.

3. Beam decay could be highly path-dependent, and only successfully predicted through an analysis of dynamics of
sensor measurement that intelligently aggregated data from multiple times.

4. Beam decay could rely on hidden internal state variables that are not infer-able from current measurements.

However, although we were not able to produce a predictive model for beam decay, we have produced new insight into
the beam decay problem that is potentially useful. From the feature selection and Granger causality research, we have
identified subsets of columns that are worth looking into for future research, and additionally potential causations
within the non-beam current columns. And finally, from the Ising model, we have given a model that flexibly segments
the data.

5.2 Future Research

For each of the possible shortcomings of our models based on the current beam state, there are potential remedies.

1. If the inability to predict is coming from operators correcting for expected beam decay, then we could reduce
our dataset to times where the operator is not on duty.

2. If the beam decay is truly chaotic, then we could try predicting on shorter time scales and then applying an
automatic control scheme to keep the beam stable on short time scales.

3. If we need to look at the dynamics to predict the future... then we could look at the dynamics. This could
involve manual feature augmentation to make the “time since last spike” available to whatever supervised learning
algorithm we use, or other manual feature augmentation using “hidden state” that is infer-able from large-scale
analysis of the data, but not from small-scale analysis.

4. In this case, we could politely ask the lab technicians to add more instrumentation to the beam apparatus.

Of course, it could be that all four of these are needed in order to automate beam current management.
More future research could involve taking the binary classifications from the Ising model and then trying to train a
machine learning classifier, as opposed to a machine learning regressor. This classification could also be tweaked by
modifying the Hamiltonian to be more sensitive to future values, so that we diagnose beam decay sooner. Another
option we want to propose for future research as well is an approach for non-linear dimensionality reduction, namely
manifold learning[17]. We ourselves were made aware of this too late into the project, however did not want to leave
this method unmentioned.
Automating detection and recovery of beam decay is a very hard task, and we have only scratched the surface in this
report. In this way, we were also not able to get our hands on the third objective of decision support. We look forward
to seeing when the CERN team tackle this problem, and we hope that this report has moved them closer to that day.
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A XGBoost Tree

Figure 20: The second tree structure

B Data Columns

These are all the columns in the dataset we had received. Of these, CERN had proposed 7 important columns, which
are highlighted in bold.

• “Time” Date time

Target features:

• “ITL.BCT05:CURRENT” ion current of the outgoing beam in transformer ITL.BCT05 in mA

• “ITF.BCT15:CURRENT”

• “ITF.BCT25:CURRENT”

• “ITH.BCT41:CURRENT”

LINAC3 settings:

• “IP.SAIREM2:FORWARDPOWER” forwarded power of the Sairem microwave generator in W

• “IP.NSRCGEN:RFTHOMSONAQNFWD” forwarded power of the Thomson microwave generator in W

• “IP.NSRCGEN:RFSAIREMAQNFWD” forwarded power of the Sairem1 microwave generator in W

• “IP.NSRCGEN:BIASDISCAQNV” voltage of the bias disk in V
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• “IP.SOLCEN.ACQUISITION:CURRENT” current of the source central solenoid in A

• “IP.SOLEXT.ACQUISITION:CURRENT” current of the source extraction solenoid in A

• “IP.SOLINJ.ACQUISITION:CURRENT” current of the source injection solenoid in A

• “IP.NSRCGEN:GASAQN” voltage of the gas feedback loop in V

• “IP.NSRCGEN:GASLOOP” number of the gas loop used

• “IP.NSRCGEN:OVEN1AQNP” power of oven 1 in W

• “IP.NSRCGEN:OVEN2AQNP” power of oven 2 in W

• “IP.NSRCGEN:SOURCEHTAQNV” voltage of the main source high voltage in V

• “IP.NSRCGEN:SOURCEINTERMEDIATEHTAQNV” voltage of intermediate electrode in V

LINAC3 sensors:

• “IP.NSRCGEN:RFSAIREMAQNREV” reflected power of the Sairem microwave generator in W

• “IP.NSRCGEN:RFTHOMSONAQNREV” reflected power of the Thomson microwave generator in W (note that this
data column only contained zeros)

• “IP.SAIREM2:REFLECTEDPOWER” reflected power of the Sairem1 microwave generator in W

• “IP.NSRCGEN:BIASDISCAQNI” current of the bias disc in mA

• “IP.NSRCGEN:GAS2AQN” pressure at the GAS2 gauge in V

• “IP.NSRCGEN:GAS3AQN” pressure at the GAS3 gauge in V

• “IP.NSRCGEN:GASEXTRACTIONAQN” pressure in the extraction in V

• “IP.NSRCGEN:GASSASAQN” pressure in the sample lock in V

• “IP.NSRCGEN:GASSOURCEAQN” pressure in the source injection in V

• “IP.NSRCGEN:OVEN1AQNI” current of oven1 in A

• “IP.NSRCGEN:OVEN1AQNR” resistance of oven1 in Ohm

• “IP.NSRCGEN:OVEN1AQNV” voltage of oven1 in V

• “IP.NSRCGEN:OVEN2AQNI” current of oven2 in A

• “IP.NSRCGEN:OVEN2AQNR” resistance of oven2 in Ohm

• “IP.NSRCGEN:OVEN2AQNV” voltage of oven2 in V

• “IP.NSRCGEN:SOURCEHTAQNI” current of the main source high voltage in mA

• “IP.NSRCGEN:SOURCEINTERMEDIATEHTAQNI” current of the intermediate electrode in mA
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